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VGP352 – Week 9ish

⇨ Agenda:
­ Discuss quiz
­ Multiple render targets
­ Floating-point textures
­ Deferred shading
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MRT

⇨ Multiple color outputs from the fragment shader
­ For practical purposes, requires the use of 

framebuffer objects
­ Slightly changes GLSL syntax
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Framebuffer Objects

⇨ Attach one or more renderable objects to it
­ 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
    GLenum attachment, GLenum textarget,
    GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
    GLenum target, GLenum attachment,
    GLenum renderbuffertarget,
    GLuint renderbuffer);

Selects how the buffer is used:

­ Color buffer: GL_COLOR_ATTACHMENT0

­ Depth buffer: GL_DEPTH_ATTACHMENT

­ Stencil buffer: GL_STENCIL_ATTACHMENT
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MRT – FBO Usage

⇨ Use additional color attachments
­ e.g. GL_COLOR_ATTACHMENT1
­ Maximum number of attachments queryable with 

GL_MAX_COLOR_ATTACHMENTS
­ EXT_fbo requires that all color attachments have the 

same internal format
­ ARB_fbo / OpenGL 3.0 allow drivers to relax this restriction
­ The driver can still reject a particular combination
­ Most hardware can handle combinations with the same size 

internal formats
­ e.g. GL_RGBA8 with GL_RGBA_10_10_10_2
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MRT – Setting Draw Buffers

⇨ Connect attachments with shader outputs:
void glDrawBuffers(GLsizei n,
    const GLenum *bufs);

­ bufs gives a list of attachments points to connect, in 
the specified order, with shader outputs

­ Shader output 0 gets the first listed attachment, output 1 gets 
the second, etc.

­ Maximum number of outputs queryable with 
GL_MAX_DRAW_BUFFERS
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MRT – GLSL Usage

⇨ gl_FragColor is but one output.  What to do?
­ Replace with a new output that is declared as an 

array:

vec4 gl_FragData[];
­ Each element in gl_FragData corresponds to one of 

the outputs set by glDrawBuffers
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Floating-point Textures

⇨ Floating-point texture support added by OpenGL 
3.0 and GL_ARB_texture_float

­ Adds several floating-point texture formats:
­ GL_RGBA32F

­ GL_RGB32F

­ GL_RGBA16F

­ GL_RGB16F

­ GL_ARB_texture_rg adds several more:
­ GL_RG32F

­ GL_R32F

­ GL_RG16F

­ GL_R16F
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Floating-point Textures

⇨ Floating-point formats used as the internal 
format of textures and renderbuffers

­ For texturing, they're just like any other internal format
­ Older hardware may not support all filtering points on 

FP textures
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Floating-point Rendering

⇨ Additional clamping control is needed
­ By default, all color outputs are clamped to [0, 1]
­ Can be relaxed:

void glClampColor(GLenum target,
    GLenum clamp);

­ target is GL_CLAMP_VERTEX_COLOR, 
GL_CLAMP_FRAGMENT_COLOR, or 
GL_CLAMP_READ_COLOR

­ clamp is GL_FIXED_ONLY, GL_TRUE, or GL_FALSE
­ Requires OpenGL 2.1 or 

GL_ARB_color_buffer_float
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Floating-point Rendering

⇨ Default clamping mode for fragment outputs is 
GL_FIXED_ONLY

­ This means that clamping only happens when the 
output is fixed-point (i.e., not FP)

⇨ One last warning:
­ Older hardware cannot blend into FP render targets
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Deferred Shading

⇨ Scenes with high depth complexity or many 
lights suffer from several problems:

­ Many passes to implement the lights
­ Lots of wasted fragment processing
­ Difficulty with per-batch storage for shadow maps
­ Difficulty with stencil shadows from multiple lights
­ etc.
­ End result: poor performance
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Deferred Shading

⇨ What if we could easily:
­ Light each pixel (not fragment) exactly once
­ Only apply lights to the fragments they affect
­ Reduce per-light cost in scenes with many lights
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Deferred Shading

⇨ General idea:
­ Render scene information needed for shading to an 

off-screen geometry buffer (G-buffer)
­ Draw per-light geometry to screen sampling from G-

buffer to calculate shading
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Deferred Shading – G-Buffer

⇨ All per-fragment data required for shading:
­ Normal
­ Position
­ Diffuse / specular color
­ etc.

⇨ Emit this during per-object rendering
­ Output this data instead of performing lighting 

calculations
­ Use MRT!
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Deferred Shading – G-Buffer

⇨ Example G-buffer layout:
­ 2 RGBA16F outputs:

­ m is the Cook-Torrance roughness
­ n is the index of refraction

Diffuse (red) Diffuse (green) Diffuse (blue) m

Normal (X) Normal (Y) Normal (Z) n
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Deferred Shading – G-Buffer

⇨ Tough choices:
­ Explicitly store position or derive from screen X/Y and 

depth value?
­ Explicitly store the normals Z or derive from its X and 

Y?
­ One of the most important parts of designing a 

deferred shading engine is selecting the parameters 
and the packing
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Deferred Shading – Lighting

⇨ For each light, draw simplified bounding 
geometry

­ Perform lighting for each fragment drawn
­ Only light the areas of the scene that need lighting
­ Read from G-buffer at the screen X/Y position
­ Add calculated lighting to existing values

­ Examples:
­ Directional light: box
­ Point light: sphere
­ Spot light: cone
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Deferred Shading – Lighting

⇨ Optimize by letting the early stencil test discard 
many fragments

­ Draw the light volume once:
­ Disable color writes

­ Set depth function to GL_LESS and stencil function to 
GL_ALWAYS

­ Set Z-fail stencil operation to GL_REPLACE and all others to 
GL_KEEP

­ Draw the light volume again:
­ Enable color writes

­ Set depth function to GL_LEQUAL and stencil function to 
GL_EQUAL

­ Set all stencil operations GL_KEEP
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Deferred Shading – Lighting

Light volume
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Deferred Shading – Lighting

Light volume
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Deferred Shading – Lighting

Light volume

Z fails 
on first 
pass

Z passes 
on second 
pass
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Deferred Shading – Drawbacks

⇨ What could go wrong?
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Deferred Shading – Drawbacks

⇨ What could go wrong?
­ Transparency effects won't work
­ Traditional anti-aliasing (multisampling) has problems
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Next week...

⇨ And by “next week” I mean tomorrow...
­ Curves and curved surfaces
­ Discuss final
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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