
© Copyright Ian D. Romanick 2009

10-June-2009

VGP352 – Week 9ish

⇨ Agenda:
­ Discuss quiz
­ Multiple render targets
­ Floating-point textures
­ Deferred shading

© Copyright Ian D. Romanick 2009

10-June-2009

MRT

⇨ Multiple color outputs from the fragment shader
­ For practical purposes, requires the use of

framebuffer objects
­ Slightly changes GLSL syntax

© Copyright Ian D. Romanick 2009

10-June-2009

Framebuffer Objects

⇨ Attach one or more renderable objects to it
­ 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
 GLenum attachment, GLenum textarget,
 GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
 GLenum target, GLenum attachment,
 GLenum renderbuffertarget,
 GLuint renderbuffer);

Selects how the buffer is used:

­ Color buffer: GL_COLOR_ATTACHMENT0

­ Depth buffer: GL_DEPTH_ATTACHMENT

­ Stencil buffer: GL_STENCIL_ATTACHMENT

© Copyright Ian D. Romanick 2009

10-June-2009

MRT – FBO Usage

⇨ Use additional color attachments
­ e.g. GL_COLOR_ATTACHMENT1
­ Maximum number of attachments queryable with

GL_MAX_COLOR_ATTACHMENTS
­ EXT_fbo requires that all color attachments have the

same internal format
­ ARB_fbo / OpenGL 3.0 allow drivers to relax this restriction
­ The driver can still reject a particular combination
­ Most hardware can handle combinations with the same size

internal formats
­ e.g. GL_RGBA8 with GL_RGBA_10_10_10_2

© Copyright Ian D. Romanick 2009

10-June-2009

MRT – Setting Draw Buffers

⇨ Connect attachments with shader outputs:
void glDrawBuffers(GLsizei n,
 const GLenum *bufs);

­ bufs gives a list of attachments points to connect, in
the specified order, with shader outputs

­ Shader output 0 gets the first listed attachment, output 1 gets
the second, etc.

­ Maximum number of outputs queryable with
GL_MAX_DRAW_BUFFERS

© Copyright Ian D. Romanick 2009

10-June-2009

MRT – GLSL Usage

⇨ gl_FragColor is but one output. What to do?
­ Replace with a new output that is declared as an

array:

vec4 gl_FragData[];
­ Each element in gl_FragData corresponds to one of

the outputs set by glDrawBuffers

© Copyright Ian D. Romanick 2009

10-June-2009

Floating-point Textures

⇨ Floating-point texture support added by OpenGL
3.0 and GL_ARB_texture_float

­ Adds several floating-point texture formats:
­ GL_RGBA32F

­ GL_RGB32F

­ GL_RGBA16F

­ GL_RGB16F

­ GL_ARB_texture_rg adds several more:
­ GL_RG32F

­ GL_R32F

­ GL_RG16F

­ GL_R16F

© Copyright Ian D. Romanick 2009

10-June-2009

Floating-point Textures

⇨ Floating-point formats used as the internal
format of textures and renderbuffers

­ For texturing, they're just like any other internal format
­ Older hardware may not support all filtering points on

FP textures

© Copyright Ian D. Romanick 2009

10-June-2009

Floating-point Rendering

⇨ Additional clamping control is needed
­ By default, all color outputs are clamped to [0, 1]
­ Can be relaxed:

void glClampColor(GLenum target,
 GLenum clamp);

­ target is GL_CLAMP_VERTEX_COLOR,
GL_CLAMP_FRAGMENT_COLOR, or
GL_CLAMP_READ_COLOR

­ clamp is GL_FIXED_ONLY, GL_TRUE, or GL_FALSE
­ Requires OpenGL 2.1 or

GL_ARB_color_buffer_float

© Copyright Ian D. Romanick 2009

10-June-2009

Floating-point Rendering

⇨ Default clamping mode for fragment outputs is
GL_FIXED_ONLY

­ This means that clamping only happens when the
output is fixed-point (i.e., not FP)

⇨ One last warning:
­ Older hardware cannot blend into FP render targets

© Copyright Ian D. Romanick 2009

10-June-2009

References

Jones, Rob. “OpenGL Frame Buffer Object 201.” GameDev.net.
December 14th, 2006. Accessed on June 10th, 2009.
http://www.gamedev.net/reference/articles/article2333.asp

http://www.gamedev.net/reference/articles/article2333.asp

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading

⇨ Scenes with high depth complexity or many
lights suffer from several problems:

­ Many passes to implement the lights
­ Lots of wasted fragment processing
­ Difficulty with per-batch storage for shadow maps
­ Difficulty with stencil shadows from multiple lights
­ etc.
­ End result: poor performance

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading

⇨ What if we could easily:
­ Light each pixel (not fragment) exactly once
­ Only apply lights to the fragments they affect
­ Reduce per-light cost in scenes with many lights

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading

⇨ General idea:
­ Render scene information needed for shading to an

off-screen geometry buffer (G-buffer)
­ Draw per-light geometry to screen sampling from G-

buffer to calculate shading

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – G-Buffer

⇨ All per-fragment data required for shading:
­ Normal
­ Position
­ Diffuse / specular color
­ etc.

⇨ Emit this during per-object rendering
­ Output this data instead of performing lighting

calculations
­ Use MRT!

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – G-Buffer

⇨ Example G-buffer layout:
­ 2 RGBA16F outputs:

­ m is the Cook-Torrance roughness
­ n is the index of refraction

Diffuse (red) Diffuse (green) Diffuse (blue) m

Normal (X) Normal (Y) Normal (Z) n

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – G-Buffer

⇨ Tough choices:
­ Explicitly store position or derive from screen X/Y and

depth value?
­ Explicitly store the normals Z or derive from its X and

Y?
­ One of the most important parts of designing a

deferred shading engine is selecting the parameters
and the packing

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – Lighting

⇨ For each light, draw simplified bounding
geometry

­ Perform lighting for each fragment drawn
­ Only light the areas of the scene that need lighting
­ Read from G-buffer at the screen X/Y position
­ Add calculated lighting to existing values

­ Examples:
­ Directional light: box
­ Point light: sphere
­ Spot light: cone

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – Lighting

⇨ Optimize by letting the early stencil test discard
many fragments

­ Draw the light volume once:
­ Disable color writes

­ Set depth function to GL_LESS and stencil function to
GL_ALWAYS

­ Set Z-fail stencil operation to GL_REPLACE and all others to
GL_KEEP

­ Draw the light volume again:
­ Enable color writes

­ Set depth function to GL_LEQUAL and stencil function to
GL_EQUAL

­ Set all stencil operations GL_KEEP

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – Lighting

Light volume

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – Lighting

Light volume

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – Lighting

Light volume

Z fails
on first
pass

Z passes
on second
pass

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – Drawbacks

⇨ What could go wrong?

© Copyright Ian D. Romanick 2009

10-June-2009

Deferred Shading – Drawbacks

⇨ What could go wrong?
­ Transparency effects won't work
­ Traditional anti-aliasing (multisampling) has problems

© Copyright Ian D. Romanick 2009

10-June-2009

References

Hargreaves, S., Harris, M. “Deferred Shading.” Nvidia 6800 Leagues
Under the Sea. June 2004.
http://developer.nvidia.com/object/6800_leagues_deferred_shading.html

Fabio Policarpo, Francisco Fonseca, Deferred shading tutorial.
Pontifical Catholic University of Rio de Janeiro. 2005.
http://www710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf

http://developer.nvidia.com/object/6800_leagues_deferred_shading.html
http://www710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf

© Copyright Ian D. Romanick 2009

10-June-2009

Next week...

⇨ And by “next week” I mean tomorrow...
­ Curves and curved surfaces
­ Discuss final

© Copyright Ian D. Romanick 2009

10-June-2009

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

